skip to main content


Search for: All records

Creators/Authors contains: "Hoff, Ryan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Faced with destabilizing conditions in the Anthropocene, infrastructure resilience modeling remains challenged to confront increasingly complex conditions toward quickly and meaningfully advancing adaptation. Data gaps, increasingly interconnected systems, and accurate behavior estimation (across scales and as both gradual and cascading failure) remain challenges for infrastructure modelers. Yet novel approaches are emerging—largely independently—that, if brought together, offer significant opportunities for rapidly advancing how we understand vulnerabilities and surgically invest in resilience. Of particular promise are interdependency modeling, cascading failure modeling, and synthetic network generation. We describe a framework for integrating these three domains toward an integrated modeling framework to estimate infrastructure networks where no data exist, connect infrastructure to establish interdependencies, assess the vulnerabilities of these interconnected infrastructure to hazards, and simulate how failures may propagate across systems. We draw from the literature as an evidence base, provide a conceptual structure for implementation, and conclude by discussing the significance of such a framework and the critical tools it may provide to infrastructure researchers and managers.

     
    more » « less
  2. Abstract

    As infrastructure confront rapidly changing environments, there is an immediate need to provide the flexibility to pivot resources and how infrastructures are prioritized. Yet infrastructures are often categorized based on static criticality framings. We describedynamic criticalityas the flexibility to reprioritize infrastructure resources during disturbances. We find that the most important prerequisite for dynamic criticality is organizational adaptive capacity characterized by flexible goals, structures, sensemaking, and strategies. Dynamic capabilities are increasingly important in the Anthropocene, where accelerating conditions, uncertainty, and growing complexity are challenging infrastructures. We review sectors that deployed dynamic management approaches amidst changing disturbances: leadership and organizational change, defense, medicine, manufacturing, and disaster response. We use an inductive thematic analysis to identify key themes and competencies and analyze capabilities that describe dynamic criticality. These competencies drive adaptive capacity and open up the flexibility to pivot what is deemed critical, depending on the particulars of the hazard. We map these competencies to infrastructure systems and describe how infrastructure organizations may build adaptive capacity toward flexible priorities.

     
    more » « less